

Autonomia energetica contest Alpe Adria

Un test reale in 8 ore di operatività

Elemento

Batteria

🔆 Pannello solare

Radio QRP (<10W)

X Setup portatile

Scopo nel contest Alpe Adria

Autonomia continua per tutta la durata (6–8h)

Ricarica durante l'attività

Efficienza e minimo assorbimento

Mobilità e rapidità di installazione

Valore formativo

Test reale di consumo e dimensionamento

Test di autonomia energetica in campo

Ottimizzazione risorse / gestione carichi

Esperienza concreta di deploy sul campo

Dalla radio in montagna alla radio in emergenza

Contest = addestramento reale

Aspetto testato nei contest <-----> Utilità in emergenza

- ✓ Deploy rapido (10–15 min) -----> ፟ Riduzione del tempo di risposta
 - ✓ Autonomia energetica -----> → Nessuna dipendenza da rete
 - ✓ Efficienza nei consumi -----> Ottimizzazione risorse limitate
- ✓ Comunicazione diretta (VHF/UHF/HF) -----> III Funziona anche con blackout o reti down
 - ✓ Setup minimalista & affidabile ----->

 Riduce i punti critici e ottimizza il trasporto
 - ✓ Velocità e affidabilità -----> ☼ Riduce il tempo ed errori tra messaggi critici

Ovviamente non tutte le trasmissioni sono uguali,

alcune considerazioni:

- Consumi TX in base a modalità operativa a parità di potenza picco:
 - SSB: generalmente consumo variabile e medio-alto dal 30 al 75% della potenza picco dipendendo.
 - CW: medio a molto alto consumo dal 50 al 85% indipendentemente dalla popotenza di picco.
 - Digitale: alto = potenza picco, con possibilità minor potenza e maggior efficenza.

Realisticamente che tipo di postazione portatile possiamo fare?

Stazione QRP (1–10W)**

Stazione 100W (classica)

Stazione 500+W (classica)

Stazione QRP (1–10W)

Ideale per contest portatili (SOTA, POTA, Field Day) o per comunicazioni in mobilità

Radio FT-817, KX3, X6100, ecc.

Consumo medio 0.5-1.5 A in RX / 2-3 A in TX

Batteria LiFePO₄ 12V (4S) 20Ah

Energia utile ~200 Wh (sufficiente per 6–8h TX/RX attiva)

Pannello 30–60W (anche pieghevole) monocristallino Regolatore PWM o MPPT piccolo (Victron, Renogy, ecc.)

Vantaggi Peso ridicolo, ricarica rapida, autonomia in zaino

Stazione HF 100W (classica)

Stazione portatile seria o per uso semi-fisso in contest o emergenza

Radio IC-7300, FT-891, TS-480, ecc.

Consumo 1–3 A RX / 20–25 A TX medio 1–3

Batteria LiFePO₄ 12V 200Ah (circa 2.2 kWh reali)

Energia utile ~2.2 KWh = 8–12h operatività reale (a seconda del duty cycle)

Pannelli due da 400W-440W

Regolatore MPPT serio (Victron, Epever, SRNE)

Ci concentreremo su due cose:

Batteria

e

Pannelli fotovoltici

Tecnologie attuali (2025)

Tecnologia	Stato	Note
LiFePO ₄ (LFP)	✓ Molto diffusa	Ottima per accumulo domestico, auto EV (es. BYD, Tesla base)
NMC	✓ Standard nei veicoli elettrici	Equilibrio tra energia e durata
LCO	✓ In telefoni e laptop	Meno usata per motivi di sicurezza
LMO	Ancora usata, ma in declino	Utile per alte correnti
NCA	✓ Tesla e altri EV premium	Alta densità energetica
LTO	✓ Niche	Prestazioni eccellenti ma costosa

Le batterie al piombo (Pb), comprese le versioni AGM e Deep Cycle, sono ancora molto diffuse oggi (2025)

- Nautica (barche, gommoni)
- Camper e caravan
- Auto
- Sistemi di backup (UPS, gruppi elettrogeni)
- Alcuni impianti solari off-grid

è la sigla chimica della batteria Litio-Ferro-Fosfato. Rispetto ad altre batterie al litio (come Li-ion tradizionali), le LiFePO₄ offrono:

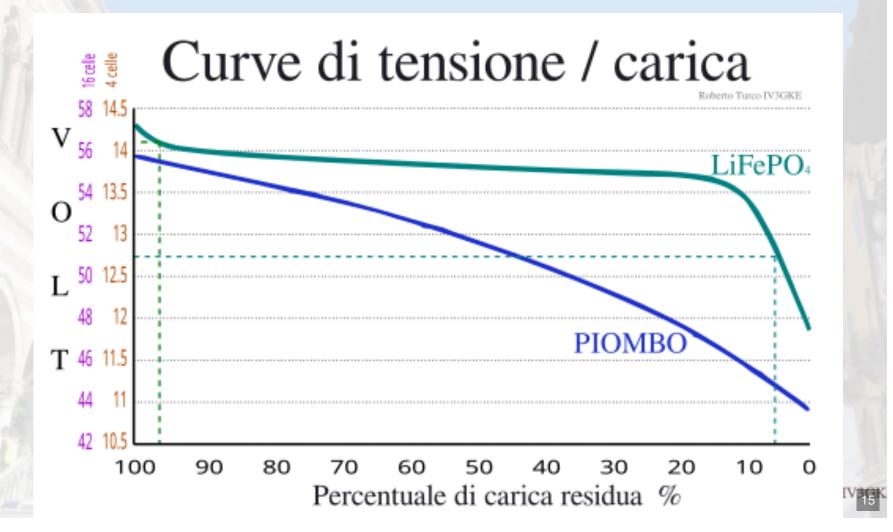
✓Maggiore sicurezza(rischio molto più basso di incendio o esplosione)

Lunga durata (da 2000 a10000 cicli di ricarica)

- Stabilità termic superiore
- ✓ Scarica costante e stabile
- X Densità energetica inferiore

Confronto tecnico rapido

Tipo di batteria	Cicli tipici	Profondità di scarica consigliata (DoD)	Manutenzione	Densità energetica	Prezzo
Piombo classico	300–500	50%	Alta (rabbocco acqua)	Bassa	\$
AGM	500– 1000	50–70%	Bassa	Media	\$\$
GEL	600– 1200	60–80%	Bassa	Media	\$\$\$
LiFePO ₄	3000- 10000+	fino a 95%	Nessuna	Alta	\$\$\$\$
LTO	10.000+	fino a 100%	Nessuna	Medio-bassa	\$\$\$\$\$


Dettaglio sull'uso della capacità LiFePO4 e impatto sulla durata

La tensione della batteria LiFePO₄ non scende linearmente con la scarica, ma ha una **zona piatta** molto ampia (circa il **80% centrale della capacità**) in cui la tensione rimane stabile e la batteria può erogare energia senza stress eccessivo.

Le fasi critiche sono:

- Ultimo 8% di scarica (quando la tensione scende rapidamente verso il cutoff, tipicamente ~2,5–2,8 V/cella)
- Ultimo 5% di carica (quando la tensione sale verso il massimo, ~3,65– 3.7 V/cella)
- Se si limita l'uso a circa l'80–90% della capacità totale (evitando cioè gli estremi critici di tensione), si può **massimizzare il numero di cicli utili**, prolungando la vita della batteria anche oltre i 6000 cicli.

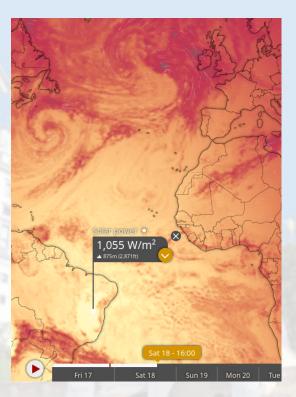
Differenza tra la batteria al piombo e la LiFePO₄

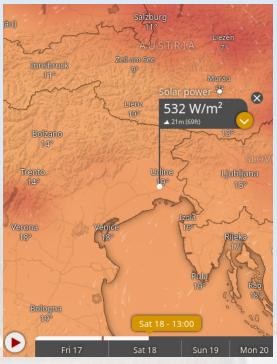
Alcune considerazioni importanti:

- I grafici e dati disponibili di carica e scarica rappresentano medie statistiche, utili per farsi un'idea generale, ma non sono "garanzie" assolute per ogni singola batteria o condizione d'uso.
- I test di laboratorio fatti dai produttori sono molto più dettagliati e precisi, ma spesso non pubblici, perché possono includere vantaggi competitivi e dati proprietari.
- L'ambiente reale (temperatura, corrente, modo d'uso, gestione BMS, qualità del caricabatterie, manutenzione) ha un impatto enorme sulla durata effettiva, quindi la variabilità è alta.
- Per questo motivo, è importante combinare la teoria con esperienza sul campo, raccolta dati e monitoraggi continuativi, soprattutto in ambienti operativi critici come le stazioni radio di emergenza.

Comportamento misurato a fine carica

per una combinazione LiFePO4 da 200Ah 51.2V con inverter ibrido 10.2KW impostato a una corrente max di 60A in carica fino raggiungigere i 56.5V poi flottante a 57.2V, iterazione tra inverter e BMS per il bilanciamento delle celle a fine carica. Operazione durata circa 4 minuti


Note importanti che le schede non dicono


- Le condizioni STC (Standard Test Conditions) si riferiscono a 1000 W/m² di irraggiamento e celle a 25 °C. Le condizioni reali sono sempre peggiori.
- Il calore fa diminuire la potenza del pannello: temperature elevate riducono la resa. Il coefficiente di temperatura ti aiuta a stimare questa perdita.
- L'orientamento, inclinazione, ombreggiamenti e sporcizia influenzano tanto quanto le differenze tra modelli.

ARI UDINE

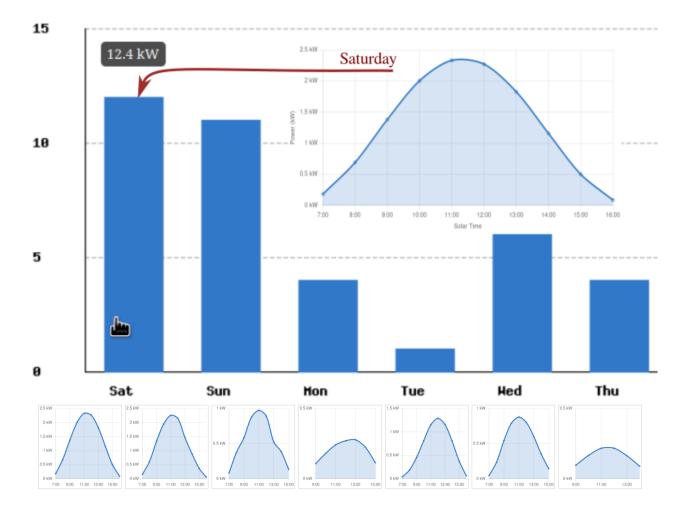
52° Meeting Alpe Adria 2025 Contest con energia Solare/Batter Radiazione solare

confronto tra il NE del Brasile e NE Italia 16 Ott. 2026

La radiazione solare raramente supera i 1050W/m2 nei tropici. Nel nord Italia il massimo si aggira sui 850/m2. Considerando anche altre perdite, la potenza reale ottenibile con (pannelli nuovi) è spesso un 70-85 % del valore nominale nei momenti migliori.

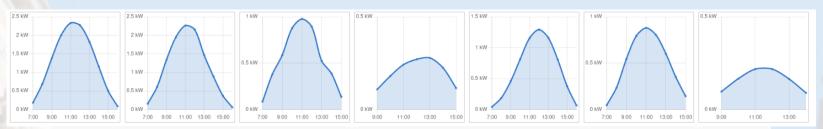
Esempio: ottobre 2025, miglior pannello trovato sul mercato

Maxeon 7 POWER: 435-445 W | EFFICIENCY: Up to 24.1%

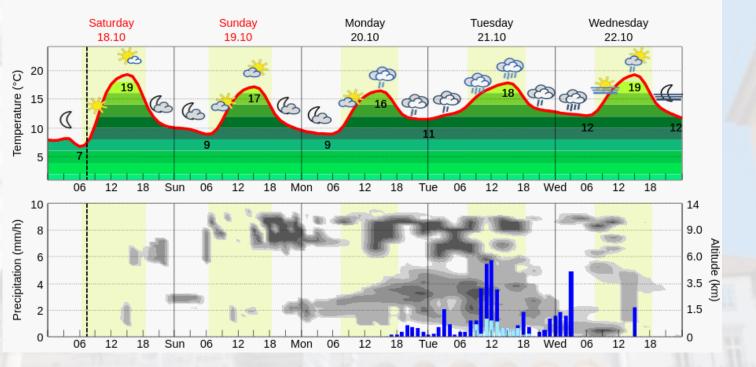

Electrical Data		
SPR-MAX7-	SPR-MAX7-	SPR-MAX7-
445-PT	440-PT	435-PT
445 W	440 W	435 W
+5/0%	+5/0%	+5/0%
24.1%	23.8%	23.5%
71.4 V	71.0 V	70.6 V
6.23 A	6.20 A	6.16 A
83.0 V	83.0 V	82.9 V
6.60 A	6.59 A	6.58 A
	1000 V IEC	
	20 A	
	-0.27% / °C	
	−0.236% / °C	
	0.058% / ℃	
	SPR-MAX7- 445-PT 445 W +5/0% 24.1% 71.4 V 6.23 A 83.0 V	SPR-MAX7- 445-PT 440-PT 445 W 440 W +5/0% +5/0% 24.1% 23.8% 71.4 V 71.0 V 6.23 A 6.20 A 83.0 V 83.0 V 6.60 A 6.59 A 1000 V IEC 20 A -0.27% / °C -0.236% / °C

Operating Condition And Mechanical Data		
Temperature	-40°C to +85°C	
Impact Resistance	45 mm diameter hail at 30.7 m/s	
Solar Cells	112 Monocrystalline Maxeon Gen 7	
Tempered glass	3.2 mm, high-transmission tempered anti- reflective	
Junction Box	IP-68, Stäubli (MC4), 2 bypass diodes	
Weight	20.7 kg	
Max. Load ⁶	Wind: 2400 Pa, 244 kg/m² front & back Snow: 5400 Pa, 550 kg/m² front	
Frame	Class 1 black anodized (highest AAMA rating)	

Packaging Configure	ation	
Number of modules per pallet	26	
Number of pallets per 40ft HQ container	24	
Number of modules per container	624	


2 Standard Test Conditions (1000 W/m² irradiance, AM 1.5, 25° C). NREL calibration Standard: SOMS current, LACCS FF and Voltage.

le migliori marche lottano per la supremazia, spesso 1% in più non compensa il costo/prestazioni



52° Meeting Alpe Adria 2025

Contest con energia Solare/Batter

45.91°N, 13.18°E (23 m asl)

Cosa asptettarsi tra 5 o 10 anni?

Stima dei cicli di vita per tecnologie emergenti

Tecnologia	Cicli stimati (approssimativi)	Note principali
Solid-State	2.000 – 10.000	Grande variabilità a seconda del tipo di elettrolita solido (ceramico, polimerico, vetroso). I <mark>migliori</mark> usano anodi in litio metallico e promettono lunga durata.
Litio-Zolfo (Li- S)	<500 – 1.500	Grande potenziale energetico, ma attualmente scarsa durata. I ricercatori stanno lavorando per ridurre il fenomeno del <i>polysulfide shuttle</i> (perdita di materiale attivo).
Litio-Aria (Li- O₂)	<200 (attuali)	Ancora in laboratorio. Il degrado è molto rapido a causa delle reazioni instabili con l'ossige <mark>no.</mark> Teoricamente promettente, ma lontana dalla commercializzazione.
Sodio-Ione (Na- ion)	2.000 - 4.000	Le versioni più recenti (es. CATL) mostrano buone prestazioni. Cicli simili a LFP, ma con dens <mark>ità energetica</mark> più bassa. Ottima per accumulo.
LTO (Litio- Titanato)	10.000 – 20.000	Anche se non è una tecnologia nuova, è la regina della durata . Usa <mark>ta</mark> in ambienti estremi, rica <mark>rica</mark> rapidissima.
Batterie strutturali	N/D (non ancora quantificabile)	Dipende dalla chimica integrata; oggi sono ancora in fase sperimentale, e la priorità è ridurre il peso piuttosto che aumentare i cicli.